
COP 4710: Database Systems (Chapter 19) Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2006

Chapter 19 – Normalization – Part 1

COP 4710: Database Systems
Spring 2006

Chapter 19 – Normalization – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (Chapter 19) Page 2 Mark Llewellyn

• Normalization is a technique for producing a set of
relations with desirable properties, given the data
requirements of the enterprise being modeled.

• The process of normalization was first developed by
Codd in 1972.

• Normalization is often performed as a series of tests on a
relation to determine whether it satisfies or violates the
requirements of a given normal form.

• Codd initially defined three normal forms called first
(1NF), second (2NF), and third (3NF). Boyce and Codd
together introduced a stronger definition of 3NF called
Boyce-Codd Normal Form (BCNF) in 1974.

Normalization

COP 4710: Database Systems (Chapter 19) Page 3 Mark Llewellyn

• All four of these normal forms are based on functional
dependencies among the attributes of a relation.

• A functional dependency describes the relationship
between attributes in a relation.

– For example, if A and B are attributes or sets of attributes of
relation R, B is functionally dependent on A (denoted A → B), if
each value of A is associated with exactly one value of B.

• In 1977 and 1979, a fourth (4NF) and fifth (5NF) normal
form were introduced which go beyond BCNF.
However, they deal with situations which are quite rare.
Other higher normal forms have been subsequently
introduced, but all of them are based on dependencies
more involved than functional dependencies.

Normalization (cont.)

COP 4710: Database Systems (Chapter 19) Page 4 Mark Llewellyn

• A relational schema consists of a number of attributes, and a
relational database schema consists of a number of relations.

• Attributes may grouped together to form a relational schema based
largely on the common sense of the database designer, or by
mapping the relational schema from an ER model.

• Whatever approach is taken, a formal method is often required to
help the database designer identify the optimal grouping of attributes
for each relation in the database schema.

• The process of normalization is a formal method that identifies
relations based on their primary or candidate keys and the functional
dependencies among their attributes.

• Normalization supports database designers through a series of tests,
which can be applied to individual relations so that a relational
schema can be normalized to a specific form to prevent the possible
occurrence of update anomalies.

Normalization (cont.)

COP 4710: Database Systems (Chapter 19) Page 5 Mark Llewellyn

• The major aim of relational database design is to group attributes
into relations to minimize data redundancy and thereby reduce the
file storage space required by the implemented base relations.

• Consider the following relation schema:

Data Redundancy and Update Anomalies

22 Deer Road

163 Main Street

375 Fox Avenue

163 Main Street

162 Main Street

22 Deer Road

baddress

B005

B003

B007

B003

B003

B005

branch#

10000

24000

12000

18000

12000

30000

salary

assistant

manager

assistant

supervisor

assistant

manager

position

Anna

David

Traci

Alan

Debi

Kristy

sname

SL41

SG5

SA9

SG14

SG37

SL21

staff#
staffbranch

COP 4710: Database Systems (Chapter 19) Page 6 Mark Llewellyn

• The staffbranch relation on the previous page contains redundant
data. The details of a branch are repeated for every member of the
staff located at that branch. Contrast this with the relation schemas
shown below.

• In this case, branch details appear only once for each branch.

Data Redundancy and Update Anomalies (cont.)

B005

B003

B007

B003

B003

B005

branch#

10000

24000

12000

18000

12000

30000

salary

assistant

manager

assistant

supervisor

assistant

manager

position

Anna

David

Traci

Alan

Debi

Kristy

sname

SL41

SG5

SA9

SG14

SG37

SL21

staff#
staff

375 Fox AvenueB007

163 Main StreetB003

22 Deer RoadB005

baddressbranch#
branch

COP 4710: Database Systems (Chapter 19) Page 7 Mark Llewellyn

• Relations which contain redundant data may have problems called
update anomalies, which can be classified as insertion, deletion, or
modification (update) anomalies.

Update Anomalies

1. To insert the details of new staff members into the staffbranch
relation, we must include the details of the branch at which the new
staff member is to be located.

• For example, if the new staff member is to be located at branch B007,
we must enter the correct address so that it matches existing tuples in the
relation. The database schema with staff and branch does not suffer
this problem.

2. To insert the details of a new branch that currently has no staff
members, we’ll need to insert null values for the attributes of the
staff such as staff number. However, since staff number is a primary
key, this would violate key integrity and is not allowed. Thus we
cannot enter information for a new branch with no staff members!

Data Redundancy and Update Anomalies (cont.)

COP 4710: Database Systems (Chapter 19) Page 8 Mark Llewellyn

Deletion Anomalies

• If we delete a tuple from the staffbranch relation that
represents the last member of the staff located at that
branch, the details about that branch will also be lost
from the database.

• For example, if we delete staff member Traci from the
staffbranch relation then the information about branch B007
will also be lost. This however, is not the case with the database
schema (staff, branch) because details about the staff are
maintained separately from details about the various branches.

Data Redundancy and Update Anomalies (cont.)

COP 4710: Database Systems (Chapter 19) Page 9 Mark Llewellyn

Modification Anomalies

• If we want to change the value of one of the attributes of
a particular branch in the staffbranch relation, for
example, the address for branch number B003, we’ll need
to update the tuples for every staff member located at that
branch.

• If this modification is not carried out on all the
appropriate tuples of the staffbranch relation, the database
will become inconsistent, e.g., branch B003 will appear
to have different addresses for different staff members.

Data Redundancy and Update Anomalies (cont.)

COP 4710: Database Systems (Chapter 19) Page 10 Mark Llewellyn

• The examples of three types of update anomalies suffered
by the staffbranch relation demonstrate that its
decomposition into the staff and branch relations avoids
such anomalies.

• There are two important properties associated with the
decomposition of a larger relation into a set of smaller
relations.

1. The lossless-join property ensures that any instance of the
original relation can be identified from corresponding instances
of the smaller relations.

2. The dependency preservation property ensures that a constraint
on the original relation can be maintained by simply enforcing
some constraint on each of the smaller relations. In other words,
the smaller relations do not need to be joined together to check if
a constraint on the original relation is violated.

Data Redundancy and Update Anomalies (cont.)

COP 4710: Database Systems (Chapter 19) Page 11 Mark Llewellyn

• Consider the following relation schema SP and its
decomposition into two schemas S1 and S2.

The Lossless Join Property

10

50

10

qty

P3

P2

P1

p#

S3

S2

S1

s#

SP

10

50

10

qty

S3

S2

S1

s#

10

50

10

qty

P3

P2

P1

p#

S1 S2

10P3S3

10P1S3

10

10

10

qty

P2

P3

P1

p#

S2

S1

S1

s#
2S1S ><

These are extraneous tuples which did not
appear in the original relation. However, now we
can’t tell which are valid and which aren’t. Once
the decomposition occurs the original SP relation
is lost.

COP 4710: Database Systems (Chapter 19) Page 12 Mark Llewellyn

Example

R = (A, B, C)

F = {AB → C, C → A}

γ = {(B, C), (A, C)}

Clearly C → A can be enforced on schema (A, C).

How can AB → C be enforced without joining the two
relation schemas in γ? Answer, it can’t, therefore the fds
are not preserved in γ.

Preservation of the Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 13 Mark Llewellyn

• For our discussion on functional dependencies (fds),
assume that a relational schema has attributes (A, B, C,
..., Z) and that the whole database is described by a single
universal relation called R = (A, B, C, ..., Z). This
assumption means that every attribute in the database has
a unique name.

• A functional dependency is a property of the semantics of
the attributes in a relation. The semantics indicate how
attributes relate to one another, and specify the functional
dependencies between attributes.

• When a functional dependency is present, the
dependency is specified as a constraint between the
attributes.

Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 14 Mark Llewellyn

• Consider a relation with attributes A and B, where attribute B is
functionally dependent on attribute A. If we know the value of A
and we examine the relation that holds this dependency, we will find
only one value of B in all of the tuples that have a given value of A,
at any moment in time. Note however, that for a given value of B
there may be several different values of A.

• The determinant of a functional dependency is the attribute or group
of attributes on the left-hand side of the arrow in the functional
dependency. The consequent of a fd is the attribute or group of
attributes on the right-hand side of the arrow.

– In the figure above, A is the determinant of B and B is the consequent of
A.

Functional Dependencies (cont.)

A BB is functionally
dependent on A

COP 4710: Database Systems (Chapter 19) Page 15 Mark Llewellyn

• Look back at the staff relation on page 6. The functional dependency
staff# → position clearly holds on this relation instance. However,
the reverse functional dependency position → staff# clearly does
not hold.

– The relationship between staff# and position is 1:1 – for each staff
member there is only one position. On the other hand, the relationship
between position and staff# is 1:M – there are several staff numbers
associated with a given position.

• For the purposes of normalization we are interested in identifying
functional dependencies between attributes of a relation that have a
1:1 relationship.

Identifying Functional Dependencies

staff# positionposition is functionally

dependent on staff#

position staff#× staff# is NOT functionally

dependent on position

COP 4710: Database Systems (Chapter 19) Page 16 Mark Llewellyn

• When identifying fds between attributes in a relation it is important
to distinguish clearly between the values held by an attribute at a
given point in time and the set of all possible values that an attributes
may hold at different times.

• In other words, a functional dependency is a property of a relational
schema (its intension) and not a property of a particular instance of
the schema (extension).

• The reason that we need to identify fds that hold for all possible
values for attributes of a relation is that these represent the types of
integrity constraints that we need to identify. Such constraints
indicate the limitations on the values that a relation can legitimately
assume. In other words, they identify the legal instances which are
possible.

Identifying Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 17 Mark Llewellyn

• Let’s identify the functional dependencies that hold using the relation
schema staffbranch shown on page 5 as an example.

• In order to identify the time invariant fds, we need to clearly
understand the semantics of the various attributes in each of the
relation schemas in question.

– For example, if we know that a staff member’s position and the branch
at which they are located determines their salary. There is no way of
knowing this constraint unless you are familiar with the enterprise, but
this is what the requirements analysis phase and the conceptual design
phase are all about!

staff# → sname, position, salary, branch#, baddress

branch# → baddress

baddress → branch#

branch#, position → salary

baddress, position → salary

Identifying Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 18 Mark Llewellyn

• It is common in many textbooks to use diagrammatic notation for
displaying functional dependencies (this is how your textbook does
it). An example of this is shown below using the relation schema
staffbranch shown on page 5 for the fds we just identified as
holding on the relational schema.

staff# → sname, position, salary, branch#, baddress
branch# → baddress
baddress → branch#
branch#, position → salary
baddress, position → salary

Identifying Functional Dependencies (cont.)

baddressbranch#salarypositionsnamestaff#
staffbranch

COP 4710: Database Systems (Chapter 19) Page 19 Mark Llewellyn

• As well as identifying fds which hold for all possible values of the
attributes involved in the fd, we also want to ignore trivial functional
dependencies.

• A functional dependency is trivial iff, the consequent is a subset of
the determinant. In other words, it is impossible for it not to be
satisfied.

– Example: Using the relation instances on page 6, the trivial
dependencies include:

{ staff#, sname} → sname

{ staff#, sname} → staff#

• Although trivial fds are valid, they offer no additional information
about integrity constraints for the relation. As far as normalization is
concerned, trivial fds are ignored.

Trivial Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 20 Mark Llewellyn

• In summary, the main characteristics of functional
dependencies that are useful in normalization are:

1. There exists a 1:1 relationship between attribute(s) in the
determinant and attribute(s) in the consequent.

2. The functional dependency is time invariant, i.e., it holds in all
possible instances of the relation.

3. The functional dependencies are nontrivial. Trivial fds are
ignored.

Summary of FD Characteristics

COP 4710: Database Systems (Chapter 19) Page 21 Mark Llewellyn

• We’ll denote as F, the set of functional dependencies that
are specified on a relational schema R.

• Typically, the schema designer specifies the fds that are
semantically obvious; usually however, numerous other
fds hold in all legal relation instances that satisfy the
dependencies in F.

• These additional fds that hold are those fds which can be
inferred or deduced from the fds in F.

• The set of all functional dependencies implied by a set of
functional dependencies F is called the closure of F and is
denoted F+.

Inference Rules for Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 22 Mark Llewellyn

• The notation: F ⊨ X → Y denotes that the functional
dependency X → Y is implied by the set of fds F.

• Formally, F+ ≡ {X → Y | F ⊨ X → Y }

• A set of inference rules is required to infer the set of fds
in F+.

– For example, if I tell you that Kristi is older than Debi and that
Debi is older than Traci, you are able to infer that Kristi is older
than Traci. How did you make this inference? Without thinking
about it or maybe knowing about it, you utilized a transitivity
rule to allow you to make this inference.

• The next page illustrates a set of six well-known
inference rules that apply to functional dependencies.

Inference Rules (cont.)

COP 4710: Database Systems (Chapter 19) Page 23 Mark Llewellyn

IR1: reflexive rule – if X ⊇ Y, then X → Y

IR2: augmentation rule – if X → Y, then XZ → YZ

IR3: transitive rule – if X → Y and Y → Z, then X → Z

IR4: projection rule – if X → YZ, then X → Y and X → Z

IR5: additive rule – if X → Y and X → Z, then X → YZ

IR6: pseudotransitive rule – if X → Y and YZ → W, then XZ → W

• The first three of these rules (IR1-IR3) are known as
Armstrong’s Axioms and constitute a necessary and sufficient
set of inference rules for generating the closure of a set of
functional dependencies.

Inference Rules (cont.)

COP 4710: Database Systems (Chapter 19) Page 24 Mark Llewellyn

• Given R = (A,B,C,D,E,F,G,H, I, J) and
F = {AB → E, AG → J, BE → I, E → G, GI → H}
does F ⊨ AB → GH?

Proof
1. AB → E, given in F
2. AB → AB, reflexive rule IR1
3. AB → B, projective rule IR4 from step 2
4. AB → BE, additive rule IR5 from steps 1 and 3
5. BE → I, given in F
6. AB → I, transitive rule IR3 from steps 4 and 5
7. E → G, given in F
8. AB → G, transitive rule IR3 from steps 1 and 7
9. AB → GI, additive rule IR5 from steps 6 and 8
10. GI → H, given in F
11. AB → H, transitive rule IR3 from steps 9 and 10
12. AB → GH, additive rule IR5 from steps 8 and 11 - proven

Example Proof Using Inference Rules

Practice Problem

Using the same set F, prove
that F ⊨ BE → H

Answer: in next set of notes

COP 4710: Database Systems (Chapter 19) Page 25 Mark Llewellyn

• Another way of looking at the closure of a set of fds F is:
F+ is the smallest set containing F such that Armstrong’s
Axioms cannot be applied to the set to yield an fd not in
the set.

• F+ is finite, but exponential in size in terms of the number
of attributes of R.

– For example, given R=(A,B,C) and F = {AB →C, C → B}, F+

will contain 29 fds (including trivial fds).

• Thus, to determine if a fd X → Y holds on a relation
schema R given F, what we really need to determine is
does F ⊨ X → Y, or more correctly is X→Y in F+?
However, we want to do this without generating all of F+

and checking to see if X→Y is in that set.

Determining Closures

COP 4710: Database Systems (Chapter 19) Page 26 Mark Llewellyn

• The technique for this is to generate not F+ but rather X+,
where X is any determinant from a fd in F. An algorithm
for generating X+ is shown below.

• X+ is called the closure of X under F (or with respect to
F).

Determining Closures (cont.)

Algorithm Closure {returns X+ under F}
input: set of attributes X, and a set of fds F
output: X+ under F
Closure (X, F)
{

X+ ← X;
repeat

oldX+ ← X+;
for every fd W→ Z in F do

if W ⊆ X+ then X+ ← X+ ∪ Z;
until (oldX+ = X+);

}

Algorithm Closure

COP 4710: Database Systems (Chapter 19) Page 27 Mark Llewellyn

Given F = {A → D, AB → E, BI → E, CD → I, E → C},
Find (AE)+

pass 1
X+ = {A, E}
using A → D, A ⊆ X+, so add D to X+, X+ = {A, E, D}
using AB → E, no
using BI → E, no
using CD → I, no
using E → C, E⊆ X+, so add C to X+, X+ = {A, E, D, C}
changes occurred to X+ so another pass is required

pass 2
X+ = {A, E, D, C}
using A → D, yes, but no changes
using AB → E, no
using BI → E, no
using CD → I, CD ⊆ X+, so add I to X+, X+ = {A, E, D, C, I}
using E → C, yes, but no changes
changes occurred to X+ so another pass is required

Example Using Algorithm Closure

COP 4710: Database Systems (Chapter 19) Page 28 Mark Llewellyn

pass 3
X+ = {A, E, D, C, I}
using A → D, yes, but no changes
using AB → E, no
using BI → E, no
using CD → I, yes, but no changes
using E → C, yes, but no changes
no changes occurred to X+ so algorithm terminates

(AE)+ = {A, E, C, D, I}

This means that the following fds are in F+: AE → AECDI

Example Using Algorithm Closure Continues

COP 4710: Database Systems (Chapter 19) Page 29 Mark Llewellyn

• Once the closure of a set of attributes X has been
generated, it becomes a simple test to tell whether or not
a certain functional dependency with a determinant of X
is included in F+.

• The algorithm shown below will determine if a given set
of fds implies a specific fd.

Algorithm Member

Algorithm Member {determines membership in F+}
input: a set of fds F, and a single fd X → Y
output: true if F ⊨ X → Y, false otherwise
Member (F, X → Y)
{

if Y ⊆ Closure(X,F)
then return true;
else return false;

}

Algorithm Member

COP 4710: Database Systems (Chapter 19) Page 30 Mark Llewellyn

• A set of fds F is covered by a set of fds F (alternatively
stated as G covers F) if every fd in G is also in F+.

– That is to say, F is covered if every fd in F can be inferred from
G.

• Two sets of fds F and G are equivalent if F+ = G+.

– That is to say, every fd in G can be inferred from F and every fd
in F can be inferred from G.

– Thus F ≡ G if F covers G and G covers F.

• To determine if G covers F, calculate X+ wrt G for each
X → Y in F. If Y ⊆ X+ for each X, then G covers F.

Covers and Equivalence of Sets of FDs

COP 4710: Database Systems (Chapter 19) Page 31 Mark Llewellyn

• Algorithm Member has a run time which is dependent on
the size of the set of fds used as input to the algorithm.
Thus, the smaller the set of fds used, the faster the
execution of the algorithm.

• Fewer fds require less storage space and thus a
corresponding lower overhead for maintenance whenever
database updates occur.

• There are many different types of covers ranging from
non-redundant covers to optimal covers. We won’t look
at all of them.

• Essentially the idea is to ultimately produce a set of fds G
which is equivalent to the original set F, yet has as few
total fds (symbols in the extreme case) as possible.

Why Covers?

COP 4710: Database Systems (Chapter 19) Page 32 Mark Llewellyn

• A set of fds is non-redundant if there is no proper subset
G of F with G ≡ F. If such a G exists, F is redundant.

• F is a non-redundant cover for G if F is a cover for G and
F is non-redundant.

Non-redundant Covers

Algorithm Nonredundant {produces a non-redundant cover}
input: a set of fds G
output: a nonredundant cover for G
Nonredundant (G)
{

F ← G;
for each fd X → Y ∈ G do

if Member(F – {X → Y}, X → Y)
then F ← F – {X → Y};

return (F);
}

Algorithm Nonredundant

COP 4710: Database Systems (Chapter 19) Page 33 Mark Llewellyn

Let G = {A → B, B → A, B → C, A → C}, find a non-redundant
cover for G.

F ← G

Member({B → A, B → C, A → C}, A → B)

Closure(A, {B → A, B → C, A → C})

A+ = {A, C}, therefore A → B is not redundant

Member({A → B, B → C, A → C}, B → A)

Closure(B, {A → B, B → C, A → C})

B+ = {B, C}, therefore B → A is not redundant

Member({A → B, B → A, A → C}, B → C)

Closure(B, {A → B, B → A, A → C})

B+ = {B, A, C}, therefore B → C is redundant F = F – {B → C}

Member({A → B, B → A}, A → C)

Closure(A, {A → B, B → A})

A+ = {A, B}, therefore A → C is not redundant

Return F = {A → B, B → A, A → C}

Example: Producing a Non-redundant Cover

COP 4710: Database Systems (Chapter 19) Page 34 Mark Llewellyn

If G = {A → B, A → C, B → A, B → C}, the same set as before but
given in a different order. A different cover will be produced!

F ← G

Member({A → C, B → A, B → C}, A → B)

Closure(A, {A → C, B → A, B → C})

A+ = {A, C}, therefore A → B is not redundant

Member({A → B, B → A, B → C}, A → C)

Closure(A, {A → B, B → A, B → C})

A+ = {A, B, C}, therefore A → C is redundant F = F – {A → C}

Member({A → B, B → C}, B → A)

Closure(B, {A → B, B → C})

B+ = {B, C}, therefore B → A is not redundant

Member({A → B, B → A}, B → C)

Closure(B, {A → B, B → A})

B+ = {B, A}, therefore B → C is not redundant

Return F = {A → B, B → A, B → C}

Example 2: Producing a Non-redundant Cover

COP 4710: Database Systems (Chapter 19) Page 35 Mark Llewellyn

• The previous example illustrates that a given set of
functional dependencies can contain more than one non-
redundant cover.

• It is also possible that there can be non-redundant covers
for a set of fds G that are not contained in G.

– For example, if

G = {A → B, B → A, B → C, A → C}

then F = {A → B, B → A, AB → C} is a non-redundant cover for G

however, F contains fds that are not in G.

Non-redundant Covers (cont.)

COP 4710: Database Systems (Chapter 19) Page 36 Mark Llewellyn

• If F is a non-redundant set of fds, this means that there are no “extra”
fds in F and thus F cannot be made smaller by removing fds. If fds
are removed from F then a set G would be produced where G ≢ F.

• However, it may still be possible to reduce the overall size of F by
removing attributes from fds in F.

• If F is a set of fds over relation schema R and X → Y∈ F, then
attribute A is extraneous in X → Y wrt F if:

1. X = AZ, X ≠ Z and {F – {X → Y}} ∪ {Z → Y} ≡ F, or

2. Y = AW, Y ≠ W and {F – {X → Y}} ∪ {X → W} ≡ F

• In other words, an attribute A is extraneous in X → Y if A can be
removed from either the determinant or consequent without changing
F+.

Extraneous Attributes

COP 4710: Database Systems (Chapter 19) Page 37 Mark Llewellyn

Example:

let F = {A→ BC, B→ C, AB→ D}

attribute C is extraneous in the consequent of A→ BC
since A+ = {A, B, C, D} when F = F – {A → C}

similarly, B is extraneous in the determinant of AB→ D
since AB+ = {A, B, C, D} when F= F – {AB→ D}

Extraneous Attributes (cont.)

COP 4710: Database Systems (Chapter 19) Page 38 Mark Llewellyn

• Let F be a set of fds over schema R and let X → Y∈ F.

X → Y is left-reduced if X contains no extraneous
attribute A.

• A left-reduced functional dependency is also called a full
functional dependency.

X → Y is right-reduced if Y contains no extraneous
attribute A.

X → Y is reduced if it is left-reduced, right-reduced, and
Y is not empty.

Left and Right Reduced Sets of FDs

COP 4710: Database Systems (Chapter 19) Page 39 Mark Llewellyn

• The algorithm below produces a left-reduced set of
functional dependencies.

Algorithm Left-Reduce

Algorithm Left-Reduce {returns left-reduced version of F}
input: set of fds G
output: a left-reduced cover for G
Left-Reduce (G)
{

F ← G;
for each fd X→ Y in G do

for each attribute A in X do
if Member(F, (X-A) → Y)

then remove A from X in X→ Y in F
return(F);

}

Algorithm Left-Reduce

COP 4710: Database Systems (Chapter 19) Page 40 Mark Llewellyn

• The algorithm below produces a right-reduced set of
functional dependencies.

Algorithm Right-Reduce

Algorithm Right-Reduce {returns right-reduced version of F}
input: set of fds G
output: a right-reduced cover for G
Right-Reduce (G)
{

F ← G;
for each fd X→ Y in G do

for each attribute A in Y do
if Member(F – {X→ Y} ∪ {X → (Y- A)}, X → A)

then remove A from Y in X→ Y in F
return(F);

}

Algorithm Right-Reduce

COP 4710: Database Systems (Chapter 19) Page 41 Mark Llewellyn

• The algorithm below produces a reduced set of functional
dependencies.

Algorithm Reduce

Algorithm Reduce {returns reduced version of F}
input: set of fds G
output: a reduced cover for G
Reduce (G)
{

F ← Right-Reduce(Left-Reduce(G));
remove all fds of the form X→ null from F
return(F);

}

Algorithm Reduce

If G contained a
redundant fd, X→ Y,
every attribute in Y
would be
extraneous and thus
reduce to X → null,
so these need to be
removed.

COP 4710: Database Systems (Chapter 19) Page 42 Mark Llewellyn

• The order in which the reduction is done by algorithm
Reduce is important. The set of fds must be left-reduced
first and then right-reduced. The example below
illustrates what may happen if this order is violated.

Example:

Let G = {B → A , D → A , BA → D}

G is right-reduced but not left-reduced. If we left-reduce

G to produce F = {B → A , D → A , B → D}

We have F is left-reduced but not right-reduced!

B → A is extraneous on right side since B → D → A

Algorithm Reduce (cont.)

COP 4710: Database Systems (Chapter 19) Page 43 Mark Llewellyn

• A set of functional dependencies F is canonical if every
fd in F is of the form X → A and F is left-reduced and
non-redundant.

Example:

G = {A → BCE, AB → DE, BI → J}

a canonical cover for G is:

F = {A → B, A → C, A → D, A → E, BI → J}

Canonical Cover

COP 4710: Database Systems (Chapter 19) Page 44 Mark Llewellyn

• A set of functional dependencies F is minimal if

1. Every fd has a single attribute for its consequent.

2. F is non-redundant.

3. No fd X → A can be replaced with one of the form Y → A
where Y ⊆ X and still be an equivalent set, i.e., F is left-reduced.

Example:

G = {A → BCE, AB → DE, BI → J}

a minimal cover for G is:

F = {A → B, A → C, A → D, A → E, BI → J}

Minimum Cover

COP 4710: Database Systems (Chapter 19) Page 45 Mark Llewellyn

• The algorithm below produces a minimal cover for a set
of functional dependencies.

Algorithm MinCover

Algorithm MinCover {returns minimum cover for F}
input: set of fds F
output: a minimum cover for F
MinCover (F)
{

G ← F;
replace each fd X → A1A2...An in G by n fds X → A1, X → A2,..., X → An
for each fd X → A in G do

if Member(G� {X → A}, X → A)
then G ← G – {X → A}

endfor
for each remaining fd in G, X → A do

for each attribute B ∈ X do
if Member([{G� {X → A}} ∪ {(X�B) → A}], (X�B) → A)

then G ← {G� {X → A}} ∪ {(X�B) → A}
endfor
return(G);

}

Algorithm MinCover

